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MULTIGRID APPROACHES TO NON-LINEAR DIFFUSION PROBLEMS ON

UNSTRUCTURED MESHES

DIMITRI J. MAVRIPLIS*

Abstract. The efficiency of three multigrid methods for solving highly non-linear diffusion problems

on two-dimensional unstructured meshes is examined. The three multigrid methods differ mainly in the

manner in which the non-linearities of the governing equations are handled. These comprise a non-linear

full approximation storage (FAS) multigrid method which is used to solve the non-linear equations directly,

a linear multigrid method which is used to solve the linear system arising from a Newton linearization of the

non-linear system, and a hybrid scheme which is based on a non-linear FAS multigrid scheme, but employs a

linear solver on each level as a smoother. Results indicate that all methods are equally effective at converging

the non-linear residual in a given number of grid sweeps, but that the linear solver is more efficient in cpu

time due to the lower cost of linear versus non-linear grid sweeps.

Key words, non-linear, unstructured, multigrid

Subject classification. Applied and Numerical Mathematics

1. Introduction. The iterative solution of non-linear problems can be tackled in various different

manners. The use of a Newton iteration approach involves linearizing the problem about the current state

and inverting the global Jacobian using an appropriate linear solver. Although Newton iteration strategies

are widespread, and are amenable to modular software development (for example in the selection of existing

linear solvers), for very large systems of equations, the formation of the Jacobian matrix can be tedious and

memory intensive. An alternate approach which avoids the construction of the Jacobian matrix consists of

using a non-linear iterative solver applied directly to the non-linear equation set. This approach has often

been described as "placing the non-linearity on the inside of the iterative procedure" as opposed to "placing

the non-linearity on the outside of the iterative scheme", for the former linearized approach. Intuitively, the

non-linear solver approach results in the non-linear residuals being updated frequently (at every iteration),

whereas the linear solver approach results in less frequent non-linear residual evaluations.

Multigrid methods can be applied to non-linear problems either as a linear solver, operating on a lin-

earization of the governing equations, or as a non-linear multigrid formulation known as the full approxima-

tion storage (FAS) scheme [1]. The fact that the FAS multigrid scheme can be applied directly to non-linear

problems remains a great advantage of multigrid methods, which can be used to solve such problems in a

"matrix free" manner. Within the context of a multigrid method, a suitable error smoother must be chosen

to reduce high-frequency errors on individual grid levels of the multigrid sequence. In the linear multigrid

case, each individual grid problem will be linear, while in the FAS case, each grid problem will itself consist

of a non-linear problem. In this latter case, the non-linear smoother can either be constructed as a non-linear

iteration procedure, or as a linear solver operating on the linearization of the local non-linear problem.

The objective of this paper is to investigate the effectiveness of these various multigrid approaches to

solving non-linear problems. In order to provide a meaningful comparison, similar discretization and solution
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strategiesmustbeusedin thedifferentvariationsofthemultigridalgorithms.
Ourtestproblemconsistsof a setof non-lineardiffusionequations,knownastheradiation-diffusion

equations.Theseequationsgoverntheevolutionof photonradiationin anopticallythickmedium,and
canbederivedfromfirst principlesby integratingoverall energyfrequencies,undertheassumptionsof
isotropyandsmallmean-freephotonpaths[9].Theseequationsareimportantin thesimulationsof inertial
confinementfusionandastrophysicalphenomena.

Fromthe numericalstandpoint,the radiation-diffusionequationsprovidea suitabletest-bedfor ex-
aminingtheeffectivenessofnumericalalgorithmsat handlingnon-linearities,sincetheseequationsexhibit
strongnon-linearbehavior,whileat the sametimetheyareof modestcomplexity,enablinga relatively
straightforwardJacobianconstruction.

Variousradiation-diffusionsolutionalgorithmsincorporatingmultigridtechniqueshavebeendemon-
stratedrecently,but thesegenerallyhaveemployedlinearmultigridmethodsaspreconditionerswithina
Newton-Krylovmethod[2,4,8]. Furthermore,thesemultigridpreconditionershavegenerallybeenapplied
in thecontextofanoperatorsplitalgorithm.

In thiswork,weemploymultigridto thefully coupledsystemofequations.Thedevelopedalgorithms
employmultigriddirectlyasa solverfor theradiation-diffusionequationsratherthanasapreconditioner.
Whilethedevelopmentof preconditionedNewton-Krylovsolutiontechniquesfor thesetypesof problems
remainsofinterest,amorestraight-forwardcomparisonbetweenlinearandnon-linearmultigridmethodsis
affordedwhenbothofthesetechniquesareformulatedassolvers.

Therearevariousapproachesto implementingmultigridmethodsonunstructuredmeshes.Forthe
purposesofthiscomparison,thelogisticsofthemultigridimplementationarenotnecessarilythedominant
concern,providedbothlinearandnon-linearapproachesareformulatedina similarmanner.At theoutset,
algebraicmultigridmethodscannotbeconsideredherein,sincetheseareexclusivelyformulatedaslinear
solvers.Becauseour longterm objectiveis the developmentof a three-dimensionalsolverfor complex
geometries,weavoidnestedgeometricmultigridmethods,whichassumetheexistenceofacompletesequence
of coarseandfineunstructuredmesheswith nestedcellstructures,the constructionof whichmaynot
befeasiblein thegeneralthree-dimensionalcase.Weconcentrateinsteadontheagglomerationmultigrid
approach,whichgeneratescoarse(non-physical)levelsautomaticallythroughagraphalgorithmandmakes
useoftheGalerkinprojectionforconstructingthecoarselevelequations.Thisapproachcanbeformulated
in a linearor non-linearmannerandhasbeendemonstratedfor largethree-dimensionalfluid-dynamics
problemsin complicatedgeometries[7].

Theremainderof thepaperis organizedasfollows. In section2 weillustratethe correspondence
betweenlinearandnon-linearmultigridmethods.Thegeneralagglomerationmultigridapproachaswellas
thethreespecificmultigridschemesimplementedforcomparisonaredescribedinsection3. In section4the
discretizationofthegoverningequationsandsampletestproblemaredescribed,whilesection5discusses
ourresults,whicharealsosummarizedin theconclusionin section6.

2. Linear and Non-Linear MG Formulations. The goal of any multigrid method is to accelerate

the solution of a fine grid problem by computing corrections on a coarser grid and then interpolating them

back to the fine grid problem. Although this procedure is described in a two grid context, it is applied

recursively on a complete sequence of fine and coarser grid levels. To apply a linear multigrid method to a

non-linear problem, a linearization must first be performed. Thus, if the equations to be solved are written

as



(2.1) R(w .... t) -- 0

with the current estimate w yielding the non-linear residual r:

(2.2) R(w) = r

the Newton linearization of this system is taken as

0Rh

(2.3) _hWh AWh = --r

This represents a linear set of equations in the solution variable AWh (the correction), to which a linear

multigrid (i.e. MG correction scheme) can be applied. In this case, the coarse grid equation reads:

ORH __ffrlinear
(2.4) 0_HH AWH =

where H and h represent coarse grid and fine grid values, respectively, and I H represents the restriction

operator which interpolates the fine grid residuals to the coarse grid. The residual of the linear system on

the fine grid on the fine grid, which is given by

(2.5)

and may be approximated as

0Rh

rlinear -- _hwhAWh+r

(2.6) rli .... _ R(w + Aw)

where R refers to the non-linear residual, as previously. The coarse grid corrections AWH which are obtained

by solving equation (2.4) are initialized on the coarse grid as zero. After the solution of equation (2.4), these

corrections are prolongated or interpolated back to the fine grid.

Alternatively, a non-linear FAS multigrid scheme can be used to solve equation (2.1) directly without

resorting to a linearization. In this case, the FAS coarse grid equation reads:

(2.7) RH(WH) = RH(IHwh) -- IHr

where the term on the right-hand side is oRen referred to as the defect-correction [1, 6]. RH represents the

coarse grid discretization and I H and i H denote the restriction operators which are now used to interpolate

residuals as well as flow variables from the fine grid to the coarse grids. In principal, different restriction

operators for residuals and variables may be employed. If equation (2.7) is re-written as:

(2.8) RH(WH) -- RH(IHwh) = --IHr



therighthandsidesof equations(2.4)and(2.8)representsimilarapproximationsof the restrictednon-
linearresidual,in viewofequation(2.6)andthefactthat theserestrictedresidualsin theFASschemeare
alwaysevaluatedatthemostrecentlyavailablefinegridupdates.Therefore,byequatingthelefthandsides
of equations(2.4)and(2.8),theequivalencebetweenthelinearmultigridschemeandthenon-linearFAS
schemeisseento begivenby:

(2.9) RH(WH)--RH(IHwh),-_ 0RH
0_HH AwH

which means that the FAS multigrid scheme corresponds to an approximation to a linear multigrid scheme,

where the coarse grid Jacobians are approximated by finite differencing the operator. Therefore, in the limit

of asymptotic convergence, i.e. when AWH << 1, the two methods should yield similar convergence rates.

Note that the above discussion involves no specification of the coarse grid operator and Jacobian con-

struction. Therefore, a fair comparison of linear versus non-linear multigrid methods should utilize a similar

construction for both of these quantities in the respective algorithms.

3. Multlgrld Algorithms. The three multigrid variants implemented in this work are based on the ag-

glomeration multigrid strategy. Agglomeration multigrid was originally developed for finite-volume schemes,

and is based on agglomerating or fusing together neighboring fine grid control-volumes to form larger coarse

grid control volumes as depicted in Figure 3.1. This approach has since been generalized for arbitrary dis-

cretizations following algebraic multigrid principles. In fact, agglomeration multigrid can be viewed as a

simplification and extension of algebraic multigrid to non-linear systems of equations. The control-volume

agglomeration algorithm can be recast as a graph algorithm, similar to algebraic multigrid methods, where

the "seed" vertex initiating an agglomerated cell corresponds to a coarse grid point, and the neighboring ag-

glomerated points correspond to fine grid points, in the algebraic multigrid terminology [10]. While weighted

graph algorithms can be employed for agglomeration, these weights cannot depend on solution values, as in

the algebraic multigrid case, but only on grid metrics. In this manner, the coarse grid levels are static and

need only be constructed at the beginning of the simulation. This avoids one of the problems associated

with algebraic multigrid applied to linearizations arising from non-linear problems, where newly constructed

coarse levels may be required at each non-linear update, a task which can be complicated in parallel com-

puting environments [3]. In the present work, for simplicity we limit ourselves to isotropic coarsening using

an unweighted graph, which produces coarse level graphs which are maximal independent sets of the fine

grid graph.

F_G. 3.1. Illustration of Agglomeration Multigrid
Coarse Level Construction



As in the algebraic multigrid case, agglomeration multigrid employs a Galerkin projection for the construction

of the coarse grid equations. Thus, the coarse grid operator is given by:

(3.1) RH = IHRhI h

where I H is the restriction operator, and I h is the prolongation operator, and both operators are taken as

piecewise constants. This simple construction applies equally to linear and non-linear operators, and reduces

to forming the coarse grid equation at an agglomerated cell as the sum of the fine grid equations at each fine

grid cell contained in the coarse grid cell. The non-linearities in the operator are evaluated using solution

variables on the coarse grid interpolated up from the fine grid.

Given this multigrid infrastructure, three particular algorithms which differ mainly in the manner in

which non-linearities are handled are developed for comparison. The first involves a standard non-linear

FAS multigrid algorithm, and the second involves a linear multigrid algorithm applied to the linearization of

the governing equations. Finally, a hybrid algorithm is also devised which uses a non-linear FAS multigrid

outer cycle, but a linear solver on each grid level as a smoother.

3.1. FAS Scheme. In the non-linear FAS multigrid algorithm, equation (2.1) is solved directly. The

coarse grid equations are formed by Galerkin projection (c.f. equation (3.1)) and the non-linearities in the

coarse grid operator are evaluated using coarse level solution variables interpolated up from the fine grid

using the i H restriction operator (as per equation (2.8)). On each grid level, the discrete equations are

solved using a non-linear block Jacobi iteration given as:

(3.2) w new = w TM + [D]-IR(w TM)

where [D] represents the block diagonal of the Jacobian matrix. This smoother constitutes a non-linear

solver, since the non-linear residual is updated at each stage, and incurs minimum memory overheads since

only the storage of the block 2X2 matrix [D] representing the coupling between the two solution variables

at each grid point is required.

3.2. Linear Multigrid Scheme. The linear multigrid scheme solves equation (2.3) on the fine grid,

and equation (2.4) on the coarse levels. On the fine grid, the Jacobian 0Rh is formed by explicitly differenti-

ating (hand coding) the discrete operator Rh. On the coarse levels, for consistency with the FAS multigrid

algorithm, the Jacobian is taken as the explicit differentiation of the coarse non-linear operator obtained

by Galerkin approximation (c.f. equation (3.1)). Thus flow variables as well as residuals are restricted to

the coarser grids, but the non-linear residuals on these coarser levels are not evaluated, only the Jacobians

corresponding to the linearization of the non-linear coarse level residuals. These coarse level Jacobians are

evaluated at the beginning of the solution phase for the non-linear time-step problem, and are then held

fixed throughout the linear multigrid iterations. Memory requirements for the linear multigrid scheme are

increased over those of the FAS scheme due to the required storage of the fine and coarse level Jacobians.

An outer Newton iteration is employed to solve the complete non-linear problem R(w) = 0. Within each

Newton iteration, the linear system defined by equation (2.3) is solved by the linear multigrid algorithm.

This provides a new fine grid non-linear correction Aw which is then used to update the non-linear residual.

Given an accurate solution of the linear problem for each outer iteration, we can expect the non-linear

Newton scheme to converge very rapidly (quadratically), thus minimizing the number of non-linear updates

required.



Oneachgridlevel,thelinearmultigridschemesolvesthelinearsystemusingablock-Jacobismoother.
If the Jacobianis dividedup intodiagonalandoff-diagonalblockcomponents,labeledas [D] and[O],
respectively,theJacobiiterationcanbewrittenas:

(3.3) [D]Awh n+l = -r- [O]Awh n

where Awh n represents corrections from the previous linear iteration, and AWh n+l represents the new

linear corrections produced by the current linear iteration. At each linear iteration, the solution of equation

(3.3) requires the inversion of the block 2X2 matrix [D] at each grid point. The linear corrections AWh are

initialized to zero at the first iteration on each grid level. Therefore, this linear iteration strategy reduces to

the non-linear Jacobi scheme described above in the event only a single linear iteration is employed.

In contrast to the non-linear FAS multigrid algorithm, the residuals, jacobians (i.e. [D] and [O] terms),

and the variables interpolated up to the coarse grids are only evaluated at the start of the non-linear iteration,

and are held fixed during all inner linear multigrid cycles within a non-linear iteration.

3.3. Hybrid Scheme. For comparison purposes, a hybrid scheme has also been developed which is

based on a non-linear FAS multigrid scheme, but solves the linearized equations on each grid level using the

block Jacobi smoother described by equation (3.3) instead of the non-linear iteration scheme of equation

(3.2).

While this scheme solves the same form of the equations on all grid levels as the linear multigrid scheme,

the non-linear residuals, physical solution variables, and discrete Jacobians are continuously updated with

each visit to a new grid level in the multigrid scheme, and no outer Newton iteration is required. However, on

each grid level, multiple linear iteration are performed to solve the non-linear problem on that grid level, and

the non-linear residuals are thus only evaluated once on each grid level for each multigrid cycle, regardless

of the number of linear iterations employed. On the other hand, this algorithm incurs the same memory

overheads as the linear multigrid scheme due to the required storage of the Jacobians.

4. Problem Formulation. The non-equilibrium radiation diffusion equations can be written as

OE
V.(D_VE) --(Ta(T4 - E)

Ot

(4.1)

with

OT
V.(PtVT) = -(Ta(T4 - E)

Ot

z 3 1 5

(7a -- T3, Dr(T, E) -- Dr(T) = aT_+ 1]°E I'

Here, E represents the photon energy, T is the material temperature, and _ is the meterial conductivity.

In the non-equilibrium case, the non-linear source terms on the right-hand-side are non-zero and govern

the transfer of energy between the radition field and material temperature. Additional non-linearities are

generated by the particular form of the diffusion coefficients, which are functions of the E and T variables.



OE
In particular, the energy diffusion coefficient, Dr(T, E) contains the term I_1 which refers to the gradient

of E in the direction normal to the cell interface (in the direction of the flux). This term constitutes a flux

limiter, which is an artificial means of ensuring physically meaningful energy propagation speeds (i.e. no

larger than the speed of light) [2, 4, 8]. The atomic number z is a material coefficient, and while it may be

highly variable, it is only a function of position (i.e. z = f(x,y) in two dimensions).

Equations (4.1) represent a system of coupled non-linear partial-differential equations which must be

discretized in space and time. Spatial discretization on two-dimensional triangular meshes is achieved by a

Galerkin finite-element procedure, assuming linear variations of E and T over a triangular element. The non-

linear diffusion coefficients are evaluated by first computing an average T and E value along a triangle edge,

and then computing the non-linear diffusion coefficient at the edge midpoint using these averaged values.

While a standard finite-element discretization requires computing triangle averaged diffusion coefficients,

the edge-based approach can more easily be reproduced on coarse agglomerated levels which do not contain

triangular structures, and simplifies the construction of exact discrete Jacobians. Both edge and triangle

based discretizations have been implemented and tested with little observable difference in accuracy. The

gradient of E in the Dr diffusion coefficient is also taken as a one dimensional gradient along the direction of

the stencil edge. The source terms are evaluated using the local vertex values of E and T exclusively, rather

than considering linear variations of these variables.

The time derivatives are discretized as first-order backwards differences, with lumping of the mass

matrix, leading to an implicit scheme which requires the solution of a non-linear problem at each time

step. This approach is first-order accurate in time, and is chosen merely for convenience, since the principal

objective is the study of the solution of the non-linear system. More sophisticated time integration strategies

involving higher-order time discretizations and variable time-step sizes, which have been implemented by

other researches in this field [2, 5] are planned for future work.

The Jacobian of the required linearizations is obtained by differentiation (hand coding) of the discrete

non-linear residual. Because the spatial discretization involves a nearest neighbor stencil, the Jacobian can be

expressed on the same graph as the residual discretization, which corresponds to the edges of the triangular

grid. The initial guess for the solution of the non-linear problem at each time-step is taken as the solution

obtained at the previous time-step.

The test case chosen for this work is taken from [8] and depicted in Figure 4.1. We consider a unit square

domain of two dissimilar materials, where the outer region contains an atomic number of z = 1 and the inner

regions (1/3 < x < 2/3), (1/3 < y < 2/3) contains an atomic number of z = 10. The top and bottom walls

are insulated, and the inlet and outlet boundaries are specified using mixed (Robin) boundary conditions,

as shown in the figure. This domain is discretized using a triangular grid containing 7,502 vertices, shown

in Figure 4.2. This grid conforms to the material interface boundaries in such a way that no triangle edges

cross this boundary.

Figure 4.2 illustrates a typical simulation for this case. Incoming radiation sets up a traveling thermal

front in the material, the progress of which is impeded by the region higher atomic number z. At critical

times in the simulation, the diffusion coefficients can vary by up to six orders of magnitude near the material

interfaces, thus providing a challenging non-linear behavior for the multigrid algorithms. At each physical

time step, a non-linear problem must be solved. It is the solution of this transient non-linear problem at

a given time step which forms the test problem for the three agglomeration multigrid algorithms. Clearly,

the size of the physical time step affects the stiffness of the non-linear problem to be solved, with smaller

physical time-steps leading to more rapidly converging systems. The non-dimensional time-step chosen in



this simulation was taken as 0.01. This constitutes a rather large value compared to those employed in

reference [8] (usually of the order of 10 -3 ) and may have an adverse effect on overall temporal accuracy, but

provides a more stringent test case for the multigrid solvers. Of the order of 1000 time steps are required to

propagate the thermal front from the inlet to outlet boundary in the current simulation.

1 + 1Ex=l

Ey= 0 Ty= 0

Z=I

Z=IO 1E- I_E x-- 0
4- 6c_

Ey= 0 Ty= 0

FIG. 4.1. Sample test problem for non-linear diffusion

equations

FIG. 4.2. Illustration of unstructured grid for non-

linear diffusion problem: 7_502 vertices

FIG. 4.3. Illustration of solution for non-linear diffusion problem: Contours of T

5. Results. In the case of the non-linear FAS multigrid scheme, the multigrid algorithm is used directly

to solve the non-linear equations at a given time step. Thus a dual-loop structure is used, containing an

outer loop over the physical time steps, and an inner loop over the number of non-linear multigrid cycles.

A four level multigrid W-cycle is employed by the FAS scheme, using 6 non-linear Jacobi iterations on each

grid level. Figure 5.1 shows the convergence achieved by the non-linear FAS multigrid algorithm at the time

step corresponding to the center frame in Figure 5.1, when the thermal front has begun to encounter the

material interface, in the presence of strong non-linearities. The non-linear residual is reduced by 8 orders

of magnitude over 9 multigrid cycles in this case, for an average reduction rate of 0.15.

In Figure 5.2, the convergence history for the same case is shown for the hybrid FAS multigrid scheme, using

6 linear iterations per grid level with a 4 level W-cycle. The convergence of this case is almost identical to

that of the previous case.

Figures 5.3 and 5.4 depict the convergence of the outer non-linear Newton iteration and the inner linear

multigrid iteration. The Newton iteration is seen to converge quadratically for this case, as expected, since



theJacobianisa consistentdifferentiationofthediscreteoperator.Thelinearmultigriditerationsemploy
a 4 levelW-cyclewith3 linearJacobiiterationspergridsweepand3 multigridW-cyclespernon-linear
iteration.Thefigureillustratestheslightincreasein the linearresidualat thebeginningof eachnon-linear
iteration,eachtimethelinearsystemismodifiedbytheevolutionof thenon-linearities.Thelargespikeat
the13thlineariterationcorrespondsto thebeginningofa newphysicaltime-stepandthusnewnon-linear
problem.
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In Figure 5.5 the convergence of the non-linear residual for all three methods is plotted in terms of grid

sweeps, where a grid sweep is defined as a linear or non-linear Jacobi iteration on the fine grid. This plot

indicates that all methods converge to approximately the same level in 40 to 50 grid sweeps. However, when

these results are plotted in terms of cpu time, Figure 5.6 reveals the higher efficiency of the linear multigrid

solver which is almost an order of magnitude faster than the non-linear FAS multigrid solver, while the



hybrid scheme lies in between these two extremes. This is principally due to the lower number of non-linear

residual evaluations required by the linear and hybrid schemes.
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6. Conclusions. The relative performance of the three multigrid algorithms described above for a

particular time step is indicative of the behavior observed at all time steps throughout the entire simulation.

For cases where convergence to low residual tolerances are required, all schemes can be expected to behave

similarly on a grid sweep basis, since the non-linearities are essentially frozen in the asymptotic convergence

regime, but the linear multigrid method becomes more efficient simply due to the smaller number of non-linear

function evaluations required, a conclusion which is further validated by the intermediate performance of the

hybrid scheme. On the other hand, in the initial phases of convergence, the FAS non-linear multigrid approach

can achieve faster convergence (particularly on a grid sweep basis) since the important non-linearities are

advanced more rapidly as opposed to the linear method which tends to "oversolve" the linear system in these

initial phases of convergence. Another advantage of the FAS scheme is its "matrix-free" formulation which

avoids the formation and storage of potentially large Jacobian matrices. Note that this advantage is lost in

the hybrid scheme, which requires the Jacobian matrix on each grid level, although not simultaneously on

all levels.

For this particular problem, the linear multigrid solver provides the overall most efficient solution strat-

egy. In general, the relative performance of linear versus non-linear multigrid methods depends on a tradeoff

between the expense of the non-linear function evaluations versus the size and complexity of the Jacobian

matrices required by the linearization. For cases where exact Jacobians cannot be easily constructed, (for

example when larger discretization stencils are employed), the FAS multigrid approach may be the only

feasible multigrid approach for solving the system in a fully coupled manner.
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